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The continued investigations to use ERTS-1 recordings for plankton

studies showed the following identified features:

1. The distribution of plankton in upwelling areas is much
more complicated than indicated by conventional methods
aboard ships.

2. Fast changes in horizontal plankton concentration
appear.

3. Wind stress seems to be the important factor in controlling
the patchiness and disappearance of high plankton concentration.

The satellite studies over our testsite were summarized during an

upwelling symposium at Marseille. A tentative manuscript which will be

part of the final report to NASA in attached.
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1. INTRODUCTION

The operation of an orbiting system at high altitudes limits the

ground resolution as well as the signal to noise ratio. Therefore, with

the recent technology, satellites are especially an advantage in areas

with high horizontal temperature and color gradients. Upwelling areas

are the most promising regions for an application of remotely sensed

data from space (Szekielda, 1972).

By using multispectral methods (Shenk and Salomonson, 1972) the most

interferring factors, namely water vapours and clouds, can be eliminated.

Also statistical methods for cloud elimination show a promising potential

to use satellite information for oceanographic purposes (Smith, Rao,

Koeffler, and Curtis, 1970; LaViolette and Chabot, 1969).

The recent plans to investigate the upwelling area along the NW

Coast of Africa include studies with satellites. The detection of

patchiness in temperature and plankton distribution in the upwelling

area along the NW Coast of Africa is of special interest because they

can be investigated from space on a synoptic way with repeated coverage.

The recent satellite missions provide recordings in the infrared

region of the electromagnetic spectrum (EMR) as well as in the visible

part. The information from those two parts of the EMR is useful for

establishing the sea surface temperature and plankton distribution in

upwelling areas. In this paper one part deals with the temperature
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distribution as observed with infrared sensors and the second part will

discuss the patchiness in plankton patterns as observed with the most

recent satellites, namely the Earth Resources Technology Satellite (ERTS)

and NOAA-2.
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2. ATMOSPHERIC CONDITIONS AND WIND SYSTEMS

Although research is underway to eliminate atmospheric attenuation of

electromagnetic energy from a test site, careful examination of atmospheric

influences on the final results have to be considered.

The climate along the West Coast of Africa between the Strait of

Gibraltar and the Cape des Palmes is determined by two anticyclonic

systems near the Azores. Atmospheric attenuation is low for Morocco,

Spanish Sahara, Manritania, Senegal, Portuguese Guinea, Guinea, Sierra

Leone and Liberia. Abnormal conditions like sandstorms, which transport

fine sand particles and dust over great distances, winds from the

continent and also the building of fog over the near coastal cold water

during the morning to afternoon, may change the visibility for shorter

periods. Since the anticyclonic system of the Azores exists with its

high pressure throughout the entire year, changes in the atmospheric

conditions are only small. During winter time of the northern hemisphere,

the high pressure system with 1012 mb is centered between the Canary

Islands and the Azores and continuous to the east to Morocco. Toward the

South the pressure reduces toward the Intertropical Convergence Zone.

During the summertime the anticyclonic system extends to the North

and the West with an increase in pressure of 1026 mb in its center at about

35°N and 45°W. This can be recognized in the normal daily weather charts.

The wind regimes can be qualitatively divided into a zone of variable winds

in the North, the area of the Northeast winds (called Alize de NE in
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French), the Intertropical Convergence with calm winds in the equatorial

region, and the Alize in the South with a Southeast component. As a

result, the cloud coverage as viewed from space reflects also the different

wind systems. Fig. 1 shows the cloud coverage in the near equatorial region

as part of the ITC.

The Alize NE is of most importance for the upwelling conditions near

the NW Coast of Africa. Its deplacement as well as its strength is a

function of the position of the anticyclone. Normally the Alize NE covers

during winter the area between 5°N and 30°N and during summer the area

between 15°N and 35°N. The wind force is between 3 and 4 Beauforts.

In the region of the Alize NE, nice weather is very common with an

extremely good horizontal and vertical visibility. For satellite studies

this area gives a good opportunity to study surface structures in the

water as well as geological and biological (vegetation) features in the

coastal zone. Fig. 2 is an example where the low albedo levels as obtained

with a television camera indicate cloudfree conditions.

The ITC in the zone of calm equatorial winds is situated between the

Alize NE and the Alize SE. In February it covers the meridian 100 miles

and in August 300 miles. The ITC is an outstanding feature in satellite

imageries and is visible in the infrared as well as in the visible spectral

region.

South of 150 N the NE winds are especially a result of the valley of

continental depression and termed Harmattan. These winds are less frequent
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in the area around Mauritania but well developed in the South. They are

frequent from November through February and seldom in March-April. At

higher altitudes they exist during the entire year and overlay the Alize,

or north of Dakar it may be placed over the monsoon. The Harmattan has its

origin in the desert regions on the continent and is characterized by a

dry atmosphere, which favors observations from space to investigate surface

features of the oceans. Aperiodically the Harmattan is charged with dust

which influence the horizontal and vertical visibility but only for short

times. The Harmattan reaches the ground only during the monsoon period.

At this time the atmospheric fallout should reach its maximum. The

intensity of the Harmattan is sometimes reduced and reaches an equilibrium

between the seabreeze at lower altitudes, or is completely diminished.

Near the Canary Islands the dominant winds are from North to NE.

In November through January the Alize is sometimes replaced by winds with

a south and/or Test component. As a function of the extension to the South

and East, the anticyclone of the Azores transports warm and dry winds from

the South to the Island Tenerife. An almost transparent atmosphere with a

small amount of aerosols is the result and the Canary Islands are easily

detectable by sensors working in the thermal infrared and in the solar

reflected energy. The pictorial display of data monitored in the visible

part of the electromagnetic spectrum shows the islands very sharply (Figs.

3 and 4). Madeira also is still influenced by the same meteorological system,

but the wind direction may be E or ESE (called Este at Madeira). This area

might be the northern limit to obtain good coverage from space with a

single orbit, but with repeated coverage of this area cloudfree orbits may



be obtained. Near the Canary Islands the inverse movement of the seabreeze

may create a calm zone in the near coastal area of the islands.

The Alize NE is dominant the entire year in the region of the Cape

Verde Islands. During December, January, and February the Harmattan is

very frequent with fine dust but is replaced during the rain period from

August through October by winds from the South.

Along the Coast of Morocco in the north, two major directions of the

winds are dominant: (1) The "Levantes" which is a dry strong wind with a

Northeast to East component and (2) the "Ponientes" which is also strong

but humid with a velocity of 45 to 60 knots. To the west, the Alize NE may

change its direction during summer to Northwest as a function of the

seabreeze. Under normal weather conditions the maximum wind speed may be

in the afternoon. The competition between the seabreeze and the Alize also

may influence the visibility.

When the Alize goes further south during winter, the north and northeast

winds are still frequent but interrupted by winds with a southwest component.

At the end of the summer a hot wind (Sirocco or locally called Chergu)

has a south or southeast direction and transports dry air commonly loaded

with sand.

More to the South at Agadir, the wind direction is modified since the

winds from east and west are present with the same egality.

The Alize with a north or northeast direction respectively are pre-

dominant the entire year along the Coast of Spanish Sahara and Mauritanai.



The north component is more pronounced in summer while the east direction

dominates during wintertime. This is shown in the wind field as given in

Fig. 5. The seabreeze is well developed to about 20-30 miles from the

shore.

The low frequency of cloud appearance along the NW Coast of Africa

can be demonstrated with albedo measurements obtained with the Medium

Resolution Infrared Radiometer (MRIR) on Nimbus III. One channel of

this instrument recorded the outgoing radiation between 0.2 to 4.0 Fm

and coveredmore than 99% of the solar reflected energy. All collected

measurements from this channel were averaged over a period of two weeks.

The effective mean radiance over this period of time is shown in

Fig. 6 where the radiant reflectance r is normalized by

- T N
r=

I* Coso*

H* is the integral over all wavelength of the solar spectral irradiance

at the top of the atmosphere multiplied by the effective spectral response,

N the effective radiance and a* the solar zenith angle.

The analysis of Fig. 6 shows the NW Coast of Africa between 11°N

and 35°N where the sharp gradient represents the interface between the

continent and the water. High albedo on the right hand side indicates

the Sahara Desert.

The frequency distribution of the data showed an albedo for water

viewed under cloudfree conditions of less than 8. Albedo less than 10
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between 23°N and ll°N shows that clouds are rarely found between Cape

Blanc and Cape Verde within a 14 day period. Above 300N more frequent

cloud coverage is indicated by increasing albedo toward the north.
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3. TEMPERATURE OBSERVATIONS

The recent studies include the analysis of data which were collected

during different spacecraft missions. Mainly, the data from scanning radio-

meters in the infrared and television cameras for the visible were applied

to derive temperature data over cloudfree regions.

The purpose of the first part of this paper is to give a qualitative

estimate of possible variations in sea surface temperature in the upwelling

area along the NW Coast of Africa. The importance of such investigation

is demonstrated by the presence of very complicated surface structures of

temperature, nutrients, and chlorophyll in the upwelling region (Weichert,

1970; Ballester, Cruzado, Julia, Manriquez, and Salat, 1972).

The fast response of surface temperature to changes of the wind field

were observed for the first time with the Nimbus II and III satellites

in the upwelling region along the Somali Coast. Duing and Szekielda (1971)

made a statistical comparison between the wind speed and the development

of horizontal temperature gradients. As a result it was concluded that

the response time of the development of surface temperature gradients onto

the wind stress is in the order of 2-4 days, which is a surprisingly fast

response of the vertical transport onto the wind. Unfortunately, almost

no data are available to estimate the surface temperature changes as a

function of the wind systems along the NW Coast of Africa.

Temperature patterns in the test site along the NW Coast of Africa

were detected with the Temperature Humidity Infrared Radiometer (THIR)
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from the Nimbus IV satellite. A period between 18 April and 6 May, 1970,

was selected when noise level of the instrument was low. Also the cloud

coverage showed a minimum at this time, which resulted in a repeated

coverage for the temperature in the upwelling area. Temperature was

recorded in the atmospheric window channel at 10.5 pm to 12.5 pm. The

ground resolution at the subpoint was eight kilometers from an altitude

of 600 nautical miles. The water vapor channel at 6.7 Fm was also used

to give qualitative information about the moisture content of the upper

troposphere and stratosphere as well as the location of Jet streams and

frontal systems.

Cloudfree conditions were detected with the Image Dissector Camera

System (IDCS) flown on the same satellite. The daytime pictures were

taken simultaneously when THIR recorded temperature patterns.

A complete timing cycle of one frame needed 208 seconds (Werner and

Branchflower, 1970) and consisted of 800 scan lines per one entire image

dissector video frame. Since a minus blue filter in front of the lens

was employed, the detection of clouds is strongly enhanced.

The ground resolution from the IDCS was approximately two nautical

miles at the nadir with a decrease to five nautical miles near the edges

of the field of view. That means consequently that the IDCS in connection

with the THIR is a good qualitative indication of whether a structure in

the infrared data is produced by the sea surface temperature or by

cloud features.

The area covered in the following analysis lies between the Canary
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Islands at 280N and Cape Verde (Dakar) at 150N. Typical samples of

the original black and white infrared image and the television picture is

displayed in Figs. 1 and 2. The color enhancement was made from the black

and white pictorial display of the IDCS and THIR with a density slicing

machine where gray levels were displayed in color on a television screen.

The color scale, black-purple-orange-yellow-green-blue-white showed the

black body temperature from warm (black) to cold (white). The low albedo

was enhanced to be black in the television image and high albedo was dis-

played in white.

Fig. 7 shows the IDCS picture and the infrared image from April 18,

1970. Extremely low albedo was measured along the coast of NW Africa

as indicated by the dark area. Rio de Oro is visible by the coastal

region displayed in blue, green, and yellow. Slight gradient in the

albedo was measured offshore as indicated from the color change purple to

yellow. However, no sharp gradients are visible in the albedo which

indicates cloudfree conditions.

The corresponding infrared image shows the continent and islands in

black according to their high black body temperature during the daytime.

From the Canary Islands Lanzarote, Gran Canaria, Tenerife, and Gomera are

visible. In the southern portion of the display San Antao and Sao Vicente

are visible as part of the Cape Verde Islands.

The structure in the distribution of the infrared data and the albedo

level as detected with the camera system show that slight cloud contamina-

tion occurs only in the small portion of the northern part of the recordings.



That means that the meandering and patchiness as shown in the infrared

data is a surface feature. From earlier experiments (Szekielda and

Mitchell, 1972) we established that each color step in the enhancement

corresponds to approximately two centigrades. Therefore, a temperature

gradient in the surface water of about eight degrees appears through the

horizontal plane of the enhanced imagery.

On April 20, 1970, cloudfree conditions were detected with the IDCS

between 80 N and 24°N (Fig. 8). According to the albedo measurements the

region close to Cape Blanc shows an extremely dry and cloudfree atmosphere.

Toward Cape Verde an increase of aerosols is indicated by the increased

albedo levels. Small portions over the continent are cloud contaminated.

They are displayed as a light blue pattern. The corresponding enhanced

image from the black body temperature recordings with THIR showed the

coldest water in green. The analysis indicated that upwelled water is

limited to a very narrow band parallel to the coast. It covered the area

between 25°N and 16°N and had a width of about thirty miles. The high

radiation at about 11°N (as displayed in dark red) shows the southern

limit of cold surface water.

According to the geostrophic circulation (Fedoseev, 1970) a cyclonic

gyral with the center to the South Coast of Cape Blanc is a permanent

feature. For the spring season considerable eddy formation has been

reported, especially south of Cape Blanc. This is not reflected in the

surface radiation on 20 April because only high temperatures were recorded

in the South.



On April 22, 1970, the image obtained with the IDCS again indicated

cloudfree conditions between 25°N and 14°N along the NW Coast of Africa

(Fig. 9). The corresponding enhanced infrared image shows that the

structure in surface temperature patterns changed drastically if compared

to previous recordings. Relative warmer black body temperatures were

measured in the north as indicated by the dark and purple colors over the

ocean. The building of separated cold water patches (enhanced in greenish-

blue) indicated a starting change in the surface parameters.

A similar analysis was made April25, 1970, with the IDCS and THIR

(Fig. 10). The infrared data show a patchiness in temperature with two

cold centers between Cape Blanc and Cape Verde. Near coastal areas had

relatively warmer temperatures.

This situation is in agreement with the geostrophic circulation of

surface waters as reported by Fedoseev (1970). In April the Canary

Current has normally a decreased intensity, and turns at about 25°N to

the African Coast into a cyclonic water movement. The center of another

cyclonic gyre has its position at about 200N and could explain the

separated colder water mass found with THIR. Tomczak (1970) reported

data on temperature variations of maximal 1.4°C in the upper 30 meters.

In near surface waters the changes are expected to be higher.

The fast changes in remotely sensed sea surface temperature as

observed over a four day period does not mean necessarily that the main

circulation changed completely. But we can conclude from this observation

that other surface features might also change very quickly. This has to be

considered if biological and chemical parameters in the surface waters are

discussed. This especially is important if only discrete sampling is



applied in upwelling regions.

Fast changes in surface temperatures can be best detected in near

coastal areas with high horizontal temperature gradients. Recent analysis

of remotely sensed temperature data indicated that also offshore regions

undergo a fast change in respect to surface temperature, although the

change is less pronounced.

Weekly mapping of sea surface temperature between 15°N and 30°W and

100N and 30°N is underway with NOAA-2. The method is based on a data

collection over one degree squares and in using a statistical approach

to determine the blackbody temperature over cloudfree areas. Fig. 11

shows a digital printout from 26 April 1973. Asterisks are identifying

the coastline. Some indication of the presence of the Canary Current is

given by the deformation of the isotherms in northeasterly direction.

The temperature analysis of May 3, 1973, showed a slight cooling in the

near coastal area. This is best indicated by comparing the position of

the 220C isoline in Fig. 11 and Fig. 12. The thermal radiation from a

blackbody radiates mainly from the first microns at the surface. Since

evaporation takes place at the ocean's surface, the blackbody temperature of

water is somewhat lower than the actual sea surface temperature. This is

due to the fact that energy is used to transfer liquid water molecules

through the interface to the gas phase. However, the "cool film" at the

air-sea interface shows only tenths of a degree deviations from the

actual temperature. The temperature changes as found in our analysis

indicate rather different vertical mixing intensities due to changes in

wind stress.
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4. OBSERVATIONS IN THE VISIBLE PART OF THE ELECTROMAGNETIC SPECTRUM

The radiation from the ocean's surface as measured with an orbiting

photometer or spectrometer is primarily a result of incident radiation

specularly reflected from below the air-sea interface and the upwelling

radiation. Curran (1973) modelled the atmospheric influence on color

ratios remotely sensed from space.

The radiance upwelled from the water column is a function of particles

and/or sediments as well as organisms in the water and dissolved colored

organic compounds like, for instance, humic acids and pigments in the cells

of phytoplankton. If the sunglint has been avoided, the albedo A (X)
s

of the oceans surface may be described by the wavelength dependent radiance

I(X), the irradiance incident on the ocean surface from above.

A (X) = IX)
5 FS(X

The irradiance Fs(X) is a composite of directly transmitted solar

irradiance and the diffuse radiation. The most simple description of

the two components can be given by

F s(X) = poFt(A) + FD(X)

where F (X) represents the irradiance, poFt(X) is the directly transmitted

solar energy; po is the cosine of the solar zenith angle. FD(X) is the

diffuse incident part of the incoming radiation from space.

Any outgoing radiation from the ocean surface will be influenced by
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aerosols and molecular constituents. Curran (1972) used for an atmospheric

transfer model the optical depth r(X) which is defined by

r(x) = d n (z) ( ,z) dz.

This integration is over altitude z. n(z) is the particle number density

and A ( ,z) the volume scattering coefficient.

The number density dn (z,r) was based on an assumed power law

distribution with size parameter v*, the particle radius r in micrometers,

and altitude z in kilometers.

dn (z,r) = c(z) r- (v * + 1) dr

The aerosol optical depth is wavelength dependent. Since Clark,

Ewing and Lorenzen (1970) used color ratios, Curran calculated wavelength

dependent properties for different values of v* and came to the conclusion

that the optical depth must be known to an accuracy of +0.01 which makes

precise vertical measurements necessary. However, if one assumes that the

horizontal values for the aerosol optical density are constant over a certain

distance interval, useful information about the position and the strength

of plankton gradients from space can be obtained.

The albedo measured at satellite altitudes differs from the measured

radiance obtained at a surface level in respect to the total irradiance

incident at this level. The albedo Ag(A) measured with a satellite is

defined by

oFoI(X)Ag(X) ~oFo(X)'



Ag(X) is termed the geometric albedo, in order to distinguish between the

satellite measured albedo and the albedo defined in equation (2). 7I(X)

is the nadir radiance, po the cosine of the solar zenith angle and Fo(X)

is the wavelength dependent solar irradiance at the top of the atmosphere.

The most possible accuracy calculated with the model by Curran (1973)

showed that useful measurements can be made from satellite altitudes

to estimate the chlorophyll concentration. This statement is true especially

for strong gradients of plankton in upwelling areas where concentrations of

chlorophyll higher than one microgram per liter with maxima up to 40 pg.1-1

and more can be found.

In respect to monitoring plankton or biomass from high altitudes we

have to consider the fact that algae behave rather like a suspension than a

pure solution of chlorophyll. That means that solar light will be scattered

at the outer shell of the plankton organisms. The absorption of incident

irradiance by the cells depends on its outer structure and the optical

density of the cell inside. Variations in optical dernsity or the config-

uration of the cells may change the intensity of backscattered light even

if the incident solar irradiance, sun angle, and the chlorophyll concentra-

tion per unit of volume remain constant. Yentsch (1960) found that the red

absorption band of chlorophyll has little influence on water color. That

means that the signal obtained with an orbiting spectrometer would record

primarily the effect of backscattered light from the organisms.

The intensity of backscattered light caused by plankton from the

ocean as a function of wavelength is given in Fig. 13. Gulf Stream water

was used as a reference water assuming that the chlorophyll concentration



of less than 0.05 pg-l 1 does not change significantly the backscattered

light compared to pure water. Assumptions were made for the interpretation

of the different spectra that sky conditions, sun angle, and sea state

were the same over both sites. The spectrum in Fig. 13 is the difference

in energy between the spectrum obtained in near coastal water and the

spectrum recorded over the Gulf Stream.

If both water masses would have had the same optical characteristics,

the energy difference in both spectra should be equal to zero. That means

that any differences between the two signals are caused by dissolved and/or

particulate matter in the sea. If chlorophyll would effect the backscattered

light by its absorption properties, we might expect differences near the

absorption bands of chlorophyll.

Chlorophylls have two main absorption maxima in the visible region of the

electromagnetic spectrum. The main absorption peaks for pure chlorophyll-a

are at 0.446 Fm and 0.663 jm. However, the naturally occurring chlorophyll-a

types in plants have spectra with peaks near 0.673 and 0.683 pIm. Other

forms show maxima near 0.690 and 0.710 pm.

Fig. 13 is some indication for the first and second absorption maximum

which appears at 0.66 pm. But the maximum of backscattered light appears

at 0.58 rm. Considering only the portion from the maximum toward the

near infrared, it is obvious that beside small changes,decrease of the

backscattered light appears. This is some indication that beside the

absorption of light by chlorophyll, backscattered light from the organisms

themselves contributes to the total backscattered energy. Thus, the size
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and concentration of particles or mainly organisms seems to be the important

contributor to the changes in backscattered light intensity. The scattering

intensity of suspended particles is proportional to X-n where X is the

wavelength and n the Rayleigh value which may vary from 4 for pure water to

0 at high turbidity. In other words the intensity of backscattered light

increases with particle concentration. This shows the important influence

of particles without chlorophyll on the backscattered light from below

the sea surface.

The Earth Resources Technology Satellite carried a multispectral

scanner (MSS) which recorded outgoing radiance in four channels with the

following spectral bands:

Channel 4 0.5 to 0.6 pm
Channel 5 0.6 to 0.7 pm
Channel 6 0.7 to 0.8 pm
Channel 7 0.8 to 1.1 Ym

With increasing wavelength the photopenetration depth decreases. That means

that any response in channel 7 defines a very near surface feature or

atmospheric contribution (clouds). This allows us to use channel 7 as a

cloud discriminator to judge whether the field of view of the MSS is cloudfree

or not.

In respect to ERTS-1 recordings the maximum energy backscattered from

plankton or organisms is covered by the two channels between 0.5 and 0.6 pm

and 0.6 to 0.7 pm. But extremely high concentrations of plankton should

be visible in other channels, too. This has been demonstrated by Szekielda

and Curran (1972). The test site which was chosen for the biomass studies

with ERTS-1 is between 10°N and 32°N. A composite of ERTS-1 imageries is
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given in Fig. 14.

We might conclude that most energy from the backscattered light from

below the surface is due to the plankton organisms and probably affected

by a certain degree by chlorophyll. This information can be correlated

with biomass or plankton concentrations.

One intense and strong upwelling along the NW Coast of Africa appears

between Cape Sim and Cape Ghir. One survey made in July 1972 showed the

lowest temperature down to 14.5°C. Furnestin (1948) reported data from

July and August 1947 with temperatures not below 16°C for the same area.

The horizontal chlorophyll and temperature distribution as obtained with

the research vessel "Jean Charcot: is shown in Fig. 15. The coldest water

is located between 30°N and 31031'. In accordance with the temperature

data the highest chlorophyll concentration was greater than 3.5 pg-1-1 and

was found in the same location. The discrete sampling of the data over a

period of four weeks smooths out many of the details which might appear

in the real distribution of chlorophyll and other surface parameters.

Continuous recordings of chlorophyll, temperature and nutrients showed that

the distribution of these parameters is much more structured than indicated

by the analysis of discrete samples (Fig. 16). For the July period no

satellite coverage was obtained.

Recordings in the visible with ERTS-1 during August and February showed

still the exist nce of plankton and/or high chlorophyll concentrations

Fig. 17 shows the patchiness in plankton distribution as recorded by

ERTS-1 on February 20, 1973. The left hand side shows the recorded energy



in the green band as a pictorial display. The position of the frame is

shown in the right hand side of the image composite. In the spectral

region between 0.5 to 0.6 pm, the water has the highest photon penetration

depth. Therefore an integrated value for plankton over the penetration

of light will be received.

The corresponding imagery from the red band of the multispectral

scanner is displayed in Fig. 18. Since the photon penetration depth is

lower than in the green band, only near surface phenomena will be observed.

The interpretation of this frame showed two cyclonic gyres at Cape Hadid,

and another gyre near Cape Sim. With different enhancements of the original

negative, more detailed analysis of this current system was achieved. The

right hand side of Fig. 18 shows the near surface circulation as derived

from channel 5. It has to be stressed that this analysis shows only the

near surface features and it is questionable whether these surface currents

reflect also the circulation in the deeper layers. Repeated coverage of

the area indicated that the direction of the surface currents is not

permanent. Furnestin (1970) also showed seasonal variation in different

planktonic species which is an indication for the change in intensity

of upwelling.

Fig. 19 is an image which was recorded on February 20, 1973, near Cape

Ghir. It shows the recordings in channel 4 which has its maximum spectral

response between 0.5 and 0.6 pm. A similar approach as shown in Fig. 18

was undertaken to analyze different enhanced imagery material for the

current pattern. The surface movements of the water masses showed similar



complicated structure in the patterns.

Since the backscattered light from plankton is most effectively

in the green part of the electromagnetic spectrum the different gray

shades over the oceans can be interpreted in terms of plankton concentra-

tion. The ERTS data showed that two different active upwelling cores with

high concentration of plankton appear between 30°N and 310N. Continuous

recordings of chlorophyll in the surface water confirmed the presence of

two well developed chlorophyll maxima between Cape Ghir (30039'N; 09°57'W)

and Cape Tefeney (31005'N; 09°51'W). This is shown in Fig. 2Q. The chloro-

phyll concentration near Cape Ghir reached 4 pg.l-1 and at Cape Tefeney 1.6

pg.l 1. Data reported by Furnestin (1959) also suggest these separated

upwelling areas.

Fig. 21 shows the distribution of surface chlorophyll during August

1972 as measured by the Spanish vessel "Cornide de Saavedra" and the

English ship "Discovery" simultaneously. High concentratiorts-of chloro-

phyll according to the discrete samples, were found near Cape Juby.

Concentration on the near coastal stations showed chlorophyll up to 8

pg- 1. Continuous recordings of fluorescence detected maximum values of

-116 pgl . Outside the upwelling area concentrations were below 0.1 pg.l

High concentrations of chlorophyll were also found between Cape Barbas

and Cape Blanc. During the investigations in August 1972, Cape Juby was

covered with one frame by ERTS. Distribution of temperature and chlorophyll

in a section perpendicular to the coast near Cape Juby is shown in Fig. 22.

The surface temperatures are below 16.5 C and showed the lowest vertical



gradient in the near coastal waters. The distribution is similar to that

described by Mascareno and Molina (1970). In the upwelling center,

-1chlwophyll reached concentrations above 0.7 pg'l . Ship measurements

and satellite data are compared in Fig. 23, where continuous chlorophyll

recordings at the surface were compared with ratios between the channels

4 and 5. Both analysis showed similar patterns although they were three

days apart.

The area between Cape Blanc and Cape Timerife shows during the entire

year low albedo levels (see Fig. 6). The analysis of data recorded by

ERTS-1 in channel 7 showed no clouds in the frame which is shown in Fig. 24.

The pictorial display of the green band can therefore be used for an inter-

pretation of the distribution pattern in plankton. Recording in the red

band in Fig. 25 still showed backscattered light from organisms. This

indicates that higher concentration of plankton is found near to the surface.

Chlorophyll concentration for August was found by Margalef (1971) to be

8pg.-1l near Cape Blanc. Productivity data reported by Furnestin (1970)

shows that the Cape Blanc region is much more productive than the other

upwelling areas:

Region gC/m /day

Off Cape Blanc 0.55 - 0.67
Cape Verde 0.11 - 0.24
Canaries 0.034 - .036

Repeated coverage of the test site between Cape Blanc and Cape Timiris

showed the changes in the position of the plankton maxima.

A similar approach to obtain the current pattern as made for the Cape

Sim area was done with enhancement of the channels 4 and 5. By enhancing
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different gray levels, the qualitative information on direction and

transportation of the plankton blooms was established. This analysis of

channels 4 and 5 for February 22, 1973, is shown in Fig. 26 where the main

transportation of plankton was offshore. The near coastal areas showed

very low concentration in plankton. The time necessary for the growth in

plankton algae might be expected far from the center of upwelling,

confirmed by the high reflected energy in the offshore region.

Data from NOAA-2 satellite were analyzed for the same day (Fig. 27).

The digitized data for the red band ald the infrared which were

calibrated in terms of temperature, are given on the left hand side

in Fig. 27. The shaded area represents high concentrations of plankton

as indicated by the reflected energy. The shaded areas in the infrared

recordings show blackbody temperatures below 290° Kelvin. The temperature

was not corrected for atmospheric attenuation but patchiness in the

temperature distribution can be used to locate the origin for the place

where the coldest water was found. A correction to be added for NOAA-2

data due to atmospheric attenuation is about four degrees for a blackbody

temperature of 2900 Kelvin. This would result in a temperature of 21°C

in the center of cold water. The surrounding temperature are four to six

degrees higher compared to the coldest water. This analysis showed that

the lowest temperature is away from the coast. But with a single orbit

alone it is not possible to decide whether the cold water represents an

intrusion from another area or new locally upwelled water.

.--



5. CONCLUSIONS

From the analyzed spacecraft data it is obvious that the distribution

of temperature and non-conservative parameters is much more complicated

than one might expect from conventional measurements onboard a ship. The

variability of oceanographic parameters (see for instance, Jones, 1972;

Ballester, et al., 1972) can hardly be resolved on a large scale even if

continuous recordings are applied. The advantage of satellite coverage

in a test site like the NW Coast of Africa is a fast detection of surface

phenomena and the possibility of repeated observation for a relatively low

price.

The presented data should help to design future experiments in respect

to the heterogeneity and fast changes of the environment as detected from

space. Aircrafts and/or spacecrafts data should be made available on a

real-time base to assure the most effective experimentation with ships.
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FIGURE CAPTIONS

Fig. 1: Infrared recorded imagery along the NW Coast of Africa between
30°N and 5°N. The continent and the Cape Islands appear black.
Clouds are displayed in white. Data obtained with Nimbus IV
Temperature Humidity Infrared Radiometer (THIR) on 24 June 1970
in the atmospheric window at 11.5 um.

Fig. 2: Data obtained with the Image Dissector Camera System (IDCS)
on Nimbus III between 10°N and 35°N on June 15, 1969.

Fig. 3: The Northwest Coast of Africa between Cape Juby and Rio de Oro
as viewed during a Gemini flight.

Fig. 4: Solar reflected energy as recorded along the NW Coast of Africa
and Spain by ITDS on 15 April 1970. The image was recorded in
the direct read out mode by the director of "Sternwaite der
Stadt Bochurn" H. Kaminski.

Fig. 5: The wind field betweenPresqu'ile and Cape Verde. Reconstructed
from Rossignol and Aboussouan (1965).

Fig. 6: Albedo measurements along the NW Coast of Africa over a two week
period in June 1970.

Fig. 7: IDCS-picture (left) and infrared image (right) taken on I8 April
1970. For explanation see text.

Fig. 8: IDCS-picture (left) and infrared image (right) taken on 20 April
1970. For explanation see text.

Fig. 9: IDCS-picture (left) and infrared image (right) taken on 22 April
1970. For explanation see text.

Fig. 10: IDCS-picture (left) and infrared image (right) taken on 25 April
1970.

Fig. 11: Digital printout of sea surface temperature as obtained with
NOAA-2 between 10°N to 300N, 150W to 300W, on 26 April 1973.

Fig. 12: Digital printout of sea surface temperature as obtained with
NOAA-2 between 100 N to 300N, 150 W to 300W, on 3 May 1973.

Fig. 13: Backscattered energy from the ocean due to particulate and
dissolved material.

29



Fig. 14: Image composite from data obtained with the MSS on ERTS-1
in channel 7 showing the NW Coast of Africa.

Fig. 15: Chlorophyll and temperature distribution during June 1972.

Fig. 16: Continuous chlorophyll, temperature and nitrate recordings.
For location of stations see Fig. 6.

Fig. 17: Recorded imagery in the green band of backscattered light from
the upwelling area near Cape Sim.

Fig. 18: Radiance recorded in the red band of the MSS on ERTS-1 (left).
Current pattern derived from channel 5 (right).

Fig. 19: Cape Ghir viewed by ERTS-1 (left). Right side shows the derived
current patterns.

Fig. 20: Continuous chlorophyll recordings between Cape Ghir (left) and
Cape Tefeny (right), July 1972.

11
Fig. 21: Chlorophyll distribution in August 1972. Values in yg- 1 .

Fig. 22: Vertical distribution of temperature ( ) and chlorophyll ( )

(g.1 - 1) perpendicular to Cape Juby, August 1972.

Fig. 23: Continuous chlorophyll recordings and color ratios obtained with
ERTS-1. The position of the stations and recordings which were
used for this comparison are shown in the ERTS-1 imagery.
(Analysis done by Dr. R. J. Curran, GSFC, NASA).

Fig. 24: Albedo recordings in channel 4.

Fig. 25: Albedo recordings in channel 5.

Fig. 26: Current patterns derived from ERTS-1 observations.

Fig. 27: Comparison between temperature patterns and reflected energy
in the red.
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ABBREVIATIONS USED

EMR Electromagnetic Radiation

ERTS Earth Resources Technology Satellite

THIR Temperature Humidity Infrared Radiometer

NOAA National Oceanic and Atmopsheric Administration

IDCS Image Dissector Camera System

MRIR Medium Resolution Infrared Radiometer

NASA National Aeronautics and Space Administration

NESS National Environmental Satellite Survey

GSFC Goddard Space Flight Center

MSS Multispectral Scanner
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FIGURE 13

RADIANCE DIFFERENCE BETWEEN NEAR COASTAL
WATER AND GULF STREAM

I I I
0.5 0.6 0.7

WATER

I I

08 0.9

m

4.0

I

0
em

Eo

3

Cs

.3-

3.0

2.0

1.0

0
0.4

I
1.0

rr�n�a ·��- · -�-· ·--�-�--·-�I;--- ·-m---�· i;;-�-�---------
I - -

-



tl *

S ¾ .a· 
·

- -A' a. 

.EI'V¶ % ·
* et -

W-r
~' -t * ~·:ji4',·rz· t~ŽL~t 4 ;l·

V , 'a

A

'N -

I-a -

C,

* a, '

* U - :

plr 4;
* % cb

bfS. *i ' A
*6, ·.

*9 4~ J

* * *

* V~

4S..

* '

aD U·. -

'a - ·

v.

0,.~~

* s~

* " ,, '·

-' S~i
'. *- .~

~c, '-Vt
"3 1'¾'

b~r-v.. ·

5~~~'* *'ci~; "¾r ·
FIGURE 14

u-;

~-R
-. 0

-r

cr-ir-a

no0
'O

i



13° 120
FIGURE 15

310

30 °

290

I I1 10



31° 21', '4

091' 539',

I

- T A ..... ... 

-- I

i 2 3 4

STATION MUMBER

5

FIGURE 16



UPWELLG'M & PLN:NTMJ PATTERJS
NH Vl-WEBT AFR:CA

ERTS-1 (GREEN BAND) 20 FEBRUARY 1973

FIGURE 17
, GODDAiD SPAC FGHTCENTE

G CEInrT. A1.AN 73-9698

Cn

0-a-0 -0

no*0&-m·

0 3
'D



CLOUDS

//

/ A//

/ / /20 FEBRUARY 1973K// MSS 5 1212- 10465

1

y

FIGURE 18



C I

/

20 FEBRUARY 1973
MSS 4 1212-10471

FIGURE 19

52

r;



40

30

20

I0

0
1430 1500 1530 1600 1630 1700

TIME IN HOURS

FIGURE 20

-J

-J
-J

2:
a.
0

0
-J
2
U

1730



0

"o
S

.

0

.

0

0

0 .

CAPE JUBY

CAPE BOJADOR

.
.

.

CAPE BARBAS

CAPE BLANC

18°  17°  16' 15' ;

FIGURE 21

'6o

_10

i. ' Il, 10

go

. -



0
)

50

100
0

16

150

M

0

A 0

0

19

0
0

22
23

rr

24

FIGURE 22

25
26



0
0

B
0

9

0.I

0

0

0.3

0.1

22
23

0

24

FIGURE 22 t:>rr

M

50

S

0.5

100

0.6

0

0.7

25
26

a



FIGURE 23

16
- 14
=L12
-j 10
-i

8
To

Q: 4
-J

oL-j

ERTS MSS RATIO GREEN/RED
25/8/72

I I I
46

POSITION

4

47

46
POSITION

47

ERTS-1 MSS-4 XO0.5-0.6 im
13030'W 13°00'W

8

8

ET M R GE D

2.0

0

1.0

45

45

I !

4,



UPWELLNG a PLAJXTON PATTERNS
rORTH-WEST AFRICA

ERTS-1 (GREEN BAND) 22 FEBRUARY 1973

FIGURE 24
( GODOARD SPAS FiLIGHT aT

GUD.T. MtiLAs 73.9696

(D(D

CL

n-r

O

:T1,Xg,



UPWELLIND & PLA:NXTON PATTERNS
C2ITHt1-WEST AFROCA

,. C
90-z00

nag

n

Ofi

a

~03
.1,

- GODDARD VAC nIGHT CENM
- - G.Win,."YLn l

ERTS-1 (RED BAND) 22 FEBRUARY 1973

FIGURE 25
73-9699



22 FEBRUARY 1973
ANALYSIS OF CHANNEL 4 AND

// A
/'

/ FOR DETAILS OF TF) SEE CHANNELS 6 A

J) -

BOUNDARY K
\ FIGURE 26

-IS AREA
ND 7

i



Figure 27
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